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Abstract. Glacier evolution models based on temperature-index approaches are commonly used to assess hydrological impacts
of glacier changes. However, in large-scale applications, these models lack calibration frameworks that efficiently leverage
sparse high-resolution observations, limiting their ability to resolve seasonal mass changes. Machine learning approaches can
potentially address this limitation by learning relationships from sparse data that are transferable in space and time, including
to unmonitored glaciers. Here, we present the Mass Balance Machine (MBM), a data-driven mass balance model based on
the XGBoost architecture, designed to provide accurate and high spatio-temporal resolution regional-scale reconstructions of
glacier mass balance. We trained and tested MBM using a dataset of approximately 4000 seasonal and annual point mass
balance measurements from 32 glaciers across heterogeneous climate settings in mainland Norway, spanning from 1962 to
2021. To assess the advantage MBM’s generalisation capabilities, we compared its predictions on independent test glaciers at
various spatio-temporal scales with those of regional-scale simulations from three glacier evolution models. MBM successfully
predicted annual and seasonal point mass balance on the test glaciers (RMSE of 0.59-1.00 m w.e. and bias of -0.01-0.04 m w.e.).
On seasonal mass balance, MBM outperformed the other models across spatial scales, reducing RMSE by up to 46% and 25%
on glacier-wide winter and summer mass balance, respectively. Our results demonstrate the capability of machine learning
models to generalise across glaciers and climatic settings from relatively sparse mass balance data, highlighting their potential

for a wide range of applications.
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1 Introduction

Glaciers around the world are losing mass and retreating due to atmospheric warming (IPCC, 2019), with numerous impacts on
nature and society (Schaub et al., 2013; Huss et al., 2017; Milner et al., 2017; Varnajot and Saarinen, 2021; Emmer et al., 2022;
Bosson et al., 2023). Glaciers represent significant freshwater reservoirs that modulate downstream freshwater availability
throughout the year. Climate change alters the timing and magnitude of glacier runoff (Bliss et al., 2014; Huss and Hock, 2018;
Wimberly et al., 2024), which subsequently affects the hydrology of glacierised catchments (Nie et al., 2021; Ultee et al.,
2022). The influence of climatic forcing is reflected in the glacier surface mass balance, which refers to the change in mass at
the surface of a glacier, or a part of a glacier, over a given period (Cogley et al., 2011), usually a year (annual mass balance) or
a season (winter or summer mass balance for mid-latitude glaciers). Quantifying glacier runoff requires reliable mass balance
estimates at high spatio-temporal resolution (i.e. individual glaciers, monthly to seasonal estimates). Such detailed assessments
are essential for societies to adapt effectively to the impacts of climate change on the hydrological system.

Glacier mass balance models are valuable tools for quantifying glacier mass changes (Radi¢ and Hock, 2011; Bliss et al.,
2014; Huss and Hock, 2015, 2018; Marzeion et al., 2012; Maussion et al., 2019; Shannon et al., 2019; Zekollari et al., 2019;
Rounce et al., 2023). Most large-scale glacier evolution models estimate glacier mass balance using temperature-index ap-
proaches that parametrise the relationship between surface melt and temperature (Hock et al., 2019; Marzeion et al., 2020). To
ensure that mass changes and climate sensitivities are accurately captured at the scale of individual glaciers, model parameters
(e.g. precipitation bias-correction factors and degree-day factors that relate the amount of ice, snow, or firn melt to tempera-
ture) must be calibrated using glacier-specific mass balance observations (Rounce et al., 2020b; Schuster et al., 2023; Zekollari
et al., 2024). Traditionally, such observations have been limited to in situ surveys using the glaciological method, where surface
mass balance measurements are performed at a network of mass balance stakes (point mass balance), and seasonal and annual
components are interpolated over the glacier area (glacier-wide mass balance; @strem and Brugman, 1991). However, since in
situ mass balance observations are challenging and resource intensive, their availability is extremely limited on a global scale
(around 0.02% of the worlds glaciers; WGMS, 2023). The scarcity of glacier-specific observations has historically posed a
major challenge in the calibration of temperature-index approaches (e.g. Radi¢ and Hock, 2014). Despite significant efforts to
develop suitable calibration techniques based on limited data (e.g. Radi¢ and Hock, 2011; Huss and Hock, 2015), large-scale
models still suffer from transferability issues: the lack of efficient frameworks to leverage the information provided by sparse
in situ observations to quantify mass changes on unmonitored glaciers.

The lack of glacier-specific observations has recently has recently been alleviated by the increasing availability of geodetic
mass balance observations based on assessing glacier surface elevation changes from time series of satellite-derived digital
elevation models (DEMs) over decadal time scales (e.g. Dussaillant et al., 2019; Shean et al., 2020; Hugonnet et al., 2021). Most
large-scale glacier evolution models today perform glacier-specific parameter calibration using (multi-year) satellite-derived
geodetic mass balance observations (e.g. Rounce et al., 2020a, 2023; Caro et al., 2024; Kang et al., 2024; Zekollari et al.,
2024) due to their worldwide coverage (2000-2019; Hugonnet et al., 2021). However, satellite-derived geodetic observations

do not provide sufficient constraints to accurately quantify seasonal mass changes (Rounce et al., 2020b; Sjursen et al., 2023),



50

55

60

65

70

75

80

https://doi.org/10.5194/egusphere-2025-1206
Preprint. Discussion started: 31 March 2025 EG U
sphere

(© Author(s) 2025. CC BY 4.0 License.

leading to equifinality (Beven, 2006); multiple parameter sets, and thus combinations of accumulation and melt, can accurately
reproduce the observed net mass changes. Consequently, the sparsity of in situ seasonal observations and transferability issues
facing current large-scale glacier evolution models still hamper their ability to produce reliable estimates of seasonal runoff
magnitudes for unmonitored glaciers.

In recent years, the use of machine learning (ML) to model glacier mass balance has emerged as a promising approach to
address some of the limitations of temperature-index approaches (Steiner et al., 2005; Bolibar et al., 2020, 2022; Anilkumar
et al., 2023; Guidicelli et al., 2023; Diaconu and Gottschling, 2024; van der Meer et al., 2025). ML models generalise patterns
from training data and apply them to make accurate inferences on new, independent data. ML models can thus utilise mass
balance observations from different glaciers to learn statistical relationships between mass balance components and topograph-
ical and meteorological variables that are transferable across space and time, including to unsurveyed glaciers and years (e.g.
Guidicelli et al., 2023).

A promising avenue of ML in glacier mass balance modelling is the spatio-temporal transfer of high-resolution information
from seasonal and annual mass balance observations at the point scale. Point mass balance measurements from glaciological
surveys represent the most direct and high-quality observations of glacier surface mass balance, offering a level of precision
that surpasses glacier-wide surface mass balance, which relies on inter- and extrapolating data to unmeasured areas. To our
knowledge, only two studies have trained ML models on point mass balance measurements. van der Meer et al. (2025) pre-
sented an ML approach for reconstruction of annual mass balance at specific sites on glaciers in Switzerland by training one
model for each individual stake using temporal aggregations of temperature and precipitation as features. Anilkumar et al.
(2023) used annual point mass balance data from glaciers in the European Alps to compare the performance of various ML
architectures. However, their use of random train-test splits on spatially correlated data means that a robust assessment of the
ability of ML models to generalise across different locations is still lacking. Moreover, the use of seasonal data is still largely
unexplored and limited to using elevation-band winter mass balance to assess precipitation biases in climate reanalysis prod-
ucts (Guidicelli et al., 2023). Generalising from seasonal and annual point mass balance measurements presents an opportunity
to improve high spatio-temporal resolution mass balance estimates on unmonitored glaciers, ultimately enhancing the accu-
racy of runoff predictions from glacierised catchments. Moreover, the advantages and limitations of ML methods compared to
traditional modelling approaches remain unclear. Such a comparison would clarify how ML-based mass balance models could
serve as a useful and complementary tool to enhance the accuracy of glacier mass balance predictions.

This study aims to evaluate the ability of an ML model to generalise spatio-temporal information across glaciers using
seasonal and annual point mass balance measurements, with the goal of providing accurate, high-resolution predictions of
surface mass balance on unmonitored glaciers. We present the Mass Balance Machine (MBM), a data-driven mass balance
model based on eXtreme Gradient Boosting (XGBoost; Chen and Guestrin, 2016), capable of reconstructing surface mass
balance up to a point scale and monthly temporal resolution for independent glaciers with diverse configurations and climatic
settings across Norway. Herein, we demonstrate how MBM can incorporate observations at different temporal scales (seasonal
and annual) in training and be customised to generate predictions at an even finer (monthly) temporal resolution. To assess the

potential of MBM to improve glacier mass balance estimates on unmonitored glaciers, we compare its performance with state-
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of-the-art large-scale glacier evolution models that rely on temperature index approaches to estimate melt and are calibrated
using existing frameworks: the Global Glacier Evolution Model (GloGEM; Huss and Hock, 2015), the Open Global Glacier
Model (OGGM; Maussion et al., 2019) and the Python Glacier Evolution Model (PyGEM; Rounce et al., 2023). Modelled
mass balances are compared to observations at point to glacier-wide spatial scales and seasonal-to-decadal scale resolution. In
addition, we benchmark monthly predictions across all models (without observations). In light of our findings, we discuss the

potential applications of MBM, as well as future perspectives on ML-based mass balance models.

2 Mass balance dataset and study area

We used a dataset of annual and seasonal glaciological point mass balance measurements from glaciers in mainland Norway
(Elvehgy et al. (2025); Fig. 1), collected by the Norwegian Water Resources and Energy Directorate (NVE) (e.g. Kjgllmoen
et al., 2024), to train MBM. The dataset contains measurements at 4170 stake locations on 32 individual glaciers on the Nor-
wegian mainland (3082/1088 stake locations on 22/10 glaciers in southern/northern Norway; Fig. 1) and includes 3910 annual,
3929 summer and 3751 winter point mass balance measurements (covering 1962-2021; Fig. 2). In all, the 32 glaciers corre-
spond to an area of 343 km?, or ~15% of the total glacierised area in Norway (2328 km? in the 2018/19 glacier inventory;
Andreassen et al., 2022). Norwegian glaciers provide a good case study for our investigation due to their diverse characteris-
tics and heterogeneous climatic settings. In southern Norway, glaciers exhibit a strong longitudinal gradient in mass turnover
with the transition from the maritime climate of the west coast to the drier interior mountain ranges (Andreassen et al., 2005).
Glaciers in northern Norway have a lower equilibrium line altitude, reflecting the increasing latitude toward the Arctic. Mea-
surements in this region also reveal a decrease in mass turnover with distance to the coast, but within a smaller range of values
compared to southern Norway.

The dataset constitutes a good representation of the spatio-temporal variability in the characteristics of glaciers in Norway. It
includes observations from the main climatic settings (Fig. 1), from the maritime glaciers of northern Norway (e.g. Langfjord-
jokelen at 70°10’N, 21°45’'E and Engabreen at 66°40’'N, 13°45'E), to glaciers along the west-east maritime to continental
climate gradient in southern Norway (e.g. Alfotbreen at 61°45'N, 5°40'E to Grésubreen at 61°39’N, 8°37'E). A wide elevation
range is covered (minimum 190 m a.s.l. to maximum 2212 m a.s.l.; Fig. 2c) reflecting that in northern Norway, the lowest
glacier tongues extend almost to sea level, while the highest altitude glaciers in southern Norway reside above 2000 m a.s.l.
The dataset has a continuous coverage of the time period 1962-2021 (Fig. 2b). During this period, glaciological records show

temporal variations in mass balance, with periods of mass gain and loss (Andreassen et al., 2005, 2020).

3 The Mass Balance Machine (MBM)

The goal of MBM is to predict surface mass balance on glaciers in Norway at high spatio-temporal resolution, based on
established relationships between mass balance and glacier characteristics and climatic forcing. This section introduces 1) the

chosen ML approach (architecture) for MBM, 2) selection of relevant features (predictors used by MBM) and 3) our strategy
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Figure 1. Geographical distribution of in situ point mass balance observations in the dataset. Climatic regions are indicated by coloured
circles on the main map: purple for northern Norway (N) including Finnmark (FIN), Skjomen (SKJ), Blamannsisen (BLA) and Svartisen
(SVA), blue for the most maritime glaciers in western Norway (W-MAR) in the Alfotbreen (ALF) region, orange for western Norway (W)
including Jostedalsbreen and Breheimen (JOB), Hardangerjgkulen (HAR) and Folgefonna (FOL) and green for the easternmost glaciers in
Jotunheimen (JOT) in southern Norway (E). The size of the circles indicates the number of stake locations in the dataset for each region.

Insets (a)—(e) show location of glaciers used for training (black points) and test (red points). Glacierised areas are shown in dark grey.

for training and testing of MBM, including design of an independent test dataset for the final performance evaluation of the

trained model.
3.1 Architecture

MBM is based on the gradient-boosted ensemble decision tree-based method XGBoost (Chen and Guestrin, 2016). Decision
trees resemble tree-like structures similar to flowcharts, with nodes, branches and leaves representing possible decision points,
partitions and outcomes (numerical targets). A well-known problem with decision tree learners is that they can result in over-
complex trees that tend to overfit, i.e. they do not generalise well beyond their training domain. Ensemble models attempt
to overcome this issue by building a strong learner from an ensemble of weak learners (relatively simple trees), which both

reduces bias and variance in predictions. XGBoost is based on the ensemble method of boosting, where weak learners are
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Figure 2. Characteristics of the point mass balance dataset, in terms of (a) distribution of observations of annual (black), winter (blue)
and summer (red) mass balance, (b) number of observations per year, and distribution of topographical features associated with each stake

location: (c) elevation, (d) aspect and (e) slope.

trained iteratively with the goal of developing new trees that improve predictions of previous trees. In XGBoost, the sequential
development of weak learners is based on reducing the model error by fitting the residuals of the current ensemble of trees.

On medium-sized (< 10000 entries) tabular data, such as ours (Fig. 4), gradient-boosted ensemble tree models have been
shown to outperform several other ML approaches, including neural networks, on a variety of regression problems (Grinsztajn
et al., 2022). XGBoost has shown outstanding results on both classification and regression tasks in various scientific fields,
including Earth sciences (e.g. Huang et al., 2021; Stanley et al., 2021; Li et al., 2022). In mass balance applications, ensemble
tree-based models have demonstrated excellent performance (Guidicelli et al., 2023; van der Meer et al., 2025), also in compar-
ison to other ML approaches (Anilkumar et al., 2023). Compared to neural networks, these models are relatively fast and easy
to train and are robust to uninformative features (Grinsztajn et al., 2022). We built MBM using the XGBoost library (version
2.0.3) for Python (version 3.10.9) and utilised the functionality provided by the scikit-learn library (version 1.4.0; Pedregosa
et al., 2011) for training MBM.

3.2 Model targets and features

The target data for MBM training were annual and seasonal point mass balance measurements of glaciers in Norway (Sect. 2).
Each point mass balance measurement is described by several attributes, including the geographical coordinates and elevation
of the stake and the measurement’s start and end dates. To ensure that only measurements with reliable attributes were used for
model training and testing, a thorough cleaning of the dataset was performed prior to training (see Appendix A).

In ML, features refer to the predictors (input) of a model. These features represent the characteristics used by the model to
generate predictions (output). MBM employs topographical and meteorological features that characterise the stake location of

each point mass balance measurement (Fig. 3). Meteorological features, in the form of monthly meteorological variables, were
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Figure 3. Features used by the Mass Balance Machine. Meteorological features are retrieved from the ERA5-Land grid cell closest to the
location of a point surface mass balance (SMB) measurement, while topographical features are extracted from the nearest Digital Elevation
Model (DEM) grid cell (Copernicus DEM GLO-90 at 90 m resolution). The resolution of the ERAS5-Land and DEM grid cells in the figure

are not to scale.

extracted from the ERAS5-Land climate reanalysis dataset (Mufioz Sabater et al., 2021) applying a nearest-neighbour approach
using the coordinates and year of each point mass balance measurement. ERAS5-Land was used due to its relatively high hor-
izontal resolution (9 km) and global coverage, which facilitates comparison with other modelling studies and allows easier
upscaling and retraining of the ML model to other regions. Monthly mean values of the following meteorological variables
were used as features in MBM: 2 m air temperature, total precipitation, downward surface solar radiation, forecast albedo,
surface sensible and latent heat fluxes and net surface thermal radiation (further discussed in Appendix B). As topographi-
cal features, which are time-invariant, we used the aspect and slope of stake locations (based on geographical coordinates),
retrieved using the OGGM pipeline (Randolph Glacier Inventory (RGI 6.0); RGI Consortium (2017); Copernicus DEM GLO-
90). The elevation difference between the ERA5-Land cell and the glacier surface was used as a feature to assist downscaling
of meteorological data to specific points at the glacier surface (Fig. 3). Topographic shading at point locations was accounted
for as the fraction of visible sky, termed the skyview factor. It was computed for the Copernicus DEM GLO-90 using the r#v
Python package (Zaksek et al., 2011; Kokalj et al., 2011; Kokalj and Somrak, 2019) and retrieved for each point from the
nearest cell.

Following feature extraction, every seasonal and annual point mass balance measurement (target) was associated with four
topographical features and a set of monthly meteorological features represented by an 7 x m matrix (Fig. 4a). Here, m repre-
sents the set of months that contribute to a given point mass balance measurement, and the number 7 refers to the set of seven

monthly meteorological features (topographical features are kept constant across months). Each point mass balance measure-
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Figure 4. Illustration of the set-up and training of MBM showing (a) the structure of the tabular dataset with features and targets for each
seasonal or annual point mass balance measurement (ID), (b) monthly restructuring of features to facilitate monthly predictions for each ID,

and (c) aggregation of monthly predictions to seasonal and annual values for evaluation (MSE loss) against the corresponding targets.

ment is described by start and end dates that may vary from year to year. For simplicity, each annual point mass balance
measurement was associated with the given hydrological year (m = 12 months; October—September), and the winter and sum-
mer seasons were defined as October—April (m = 7 months) and May—-September (m = 5 months). For MBM to make mass
balance predictions at a monthly resolution, the data is restructured such that each target is associated with a set of m monthly
predictions based on the set of four topographical features and seven meteorological features corresponding to the respective
months (Fig. 4b). Finally, the set of m monthly predictions is aggregated and evaluated on the time scale (seasonal or annual)

of each target (Fig. 4c, see details in Sect. 3.3.2).
3.3 Model training and testing

In training and testing of MBM, we adhered to the general procedure in ML modelling, which can be summarised as follows:
1) splitting the dataset into training and test partitions where the test dataset is withheld during model training, 2) tuning of
the model hyperparameters using the training dataset, preferably by employing a cross-validation technique where the model
is iteratively trained and validated on subsets (or folds) of the training dataset and 3) final evaluation of the performance of the
trained model on the test dataset. Step 3 serves as an assessment of the predictive power of the model on new unseen data. In
the following sections, we detail our strategies for the design of the independent test dataset, tuning of MBM hyperparameters

and performance evaluation.
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3.3.1 Test dataset

The test dataset used for ML model performance evaluation must be carefully selected with respect to the modelling objective,
such that the model’s performance on the test dataset accurately reflects its ability to fulfil this objective. In addition, an
underlying assumption of this performance evaluation is that the data used for model training and testing are independent (e.g.
Hastie et al., 2009, Chapter 7). Point mass balance data, however, exhibit spatial correlation, meaning that measurements taken
at one location will be similar to those at nearby locations. Random train-test data splits, which are commonly used in ML, do
not ensure independence between the training and test datasets in the presence of spatial correlation. In such cases, a random
split may result in leakage of information between training and test datasets, leading to unreliable performance measures that
may not be representative of the model’s true performance on independent data (e.g. Roberts et al., 2017; Schratz et al., 2019;
Kattenborn et al., 2022). Thus, when independence may be compromised, as with spatially correlated point mass balance
measurements, the train-test split should be designed to minimise autocorrelation between training and test data, for example,
by using spatial blocking strategies (Roberts et al., 2017).

Considering these criteria, all point mass balance measurements for 14 glaciers in the dataset were withheld for testing. The
test glaciers were chosen from each region in Fig. 1, such that the distributions of targets and features in the test dataset are
similar to those of the training dataset. We avoided selecting adjacent glaciers to ensure independence between the training and
test data to the best of our ability. The performance evaluation of MBM on the test dataset thus reflects the model’s ability to
predict mass balance on glaciers without mass balance observations. We consider the test glaciers to be representative of the
population of Norwegian glaciers, both in terms of climatic settings, topography and mass balance distributions. In total, 1065,
999 and 1028 annual, winter and summer mass balance measurements were withheld for testing, respectively (corresponding

to 27, 27 and 26 percent of the total number of measurements).
3.3.2 Model training and hyperparameter tuning

During training, MBM learns the structure of the training data by iteratively building trees to minimise a loss function. We
employed the commonly used Mean Squared Error (MSE):

n

_1 Y
MSE = nZ(bl bi)?, (1

=1

where b; is the target point mass balance and b; is the predicted point mass balance corresponding to each of the n targets.
Before evaluating the MSE loss, monthly point mass balance predictions from MBM are aggregated over the time period
associated with each target point mass balance (seasonal or annual, Fig. 4). Thus, a seasonal or annual point mass balance

prediction b; is the sum of m monthly predictions by:

bi=Y b, )
t=1

where m equals 12, 7 and 5 for an annual, winter and summer point mass balance prediction, respectively (see Sect. 3.2).
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Table 1. Overview of hyperparameter combinations used in Mass Balance Machine hyperparameter tuning and selected hyperparame-
ter combination during cross-validation. n_estimators refers to the number of trees, max_depth refers to the maximum tree depth and

min_child_weight refers to the minimum number of samples required to split a node.

Hyperparameter Grid search Selected
learning_rate [0.01,0.05,0.10,0.15,0.20] 0.05
n_estimators [100, 200,300,400, 500] 300
max_depth [3,4,5,6,7] 5
min_child_weight [0,5,10] 0

Hyperparameters refer to the parameters of an ML model that are configured before training and control the learning process.
We performed a hyperparameter grid search using five-fold cross-validation to identify the optimal hyperparameter configu-
ration (e.g. Hastie et al., 2009, Chapter 7). This involved splitting the training dataset (the remaining training data after the
train-test split) into five subsets (folds), repeatedly training the model on four of the five folds, and evaluating the model per-
formance (validation) on the remaining fold. Thus, all folds are used once for validation for each hyperparameter combination.
Ideally, the split of training and validation subsets would follow the same spatial blocking strategy as the train/test split to
ensure that the choice of model hyperparameters is based on a validation performance that reflects the expected test perfor-
mance. However, this is not always feasible within the limitations of the data (Roberts et al., 2017). The point mass balance
dataset includes a limited number of glaciers. Using a strict spatial blocking strategy in the train/validation split would create
unbalanced folds. This introduces unnecessary high demands of the model to extrapolate and hampers learning. As a compro-
mise, we assigned every fifth mass-balance year in the training dataset to a different fold. This train/validation split strategy
yields balanced folds (between 518 and 624 annual, winter and summer mass balance measurements per fold), which facilitates
learning while forcing the model to perform some extrapolation in time. Importantly, the strategy avoids a random split that
would give unreliable validation scores.

During the hyperparameter grid search, different combinations of four XGBoost hyperparameters were used (Table 1): the
learning rate, number of estimators, maximum tree depth and the minimum number of samples required to split a node. Other
hyperparameter configurations were also investigated but did not have notable effects on the model validation performance.
Therefore, the remaining hyperparameters were kept to default values. We selected the hyperparameter combination that min-

imised the mean MSE of the five validation folds (Table 1).
3.3.3 Model performance evaluation on test dataset

Once the optimal model hyperparameters were chosen, MBM was retrained on the full training dataset. Then, we assessed the
performance of MBM on the test dataset of annual and seasonal point mass balance measurements described in Sect. 3.3.1
(1065, 999 and 1028 annual, winter and summer point mass balance measurements on 14 glaciers between 1962-2021). For

the performance evaluation, MBM’s monthly predictions were aggregated to seasonal or annual resolution as done in training
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(Eq. 2 and Fig. 4c). We assessed the performance of MBM using the following metrics: Root Mean Squared Error (RMSE),
Mean Absolute Error (MAE), mean bias and R? metric.

4 Mass balance model comparison
4.1 Model comparison set-up

MBM predictions were compared at different spatio-temporal scales against those of established global glacier evolution mod-
els using temperature-index approaches: GloGEM (Huss and Hock, 2015, with minor updates), OGGM (Maussion et al., 2019)
and PyGEM (Rounce et al., 2020b, 2023) (henceforth referred to as glacier evolution models). There are two objectives to this
comparison: 1) to compare the performance of MBM to the glacier evolution models using available glacier mass balance
observations (glaciological point and glacier-wide mass balance observations (Kjgllmoen et al., 2024), as well as geodetic
mass balance observations from different sources (Andreassen et al., 2016, 2020; Hugonnet et al., 2021)) and 2) to benchmark
MBM'’s monthly mass balance predictions against those of the glacier evolution models since no mass balance observations are
available on this time scale. We thus compared predictions from MBM and the glacier evolution models across a wide range
of spatial scales, from the point/elevation-band scale, over mass balance gradients with elevation to the glacier wide scale, as
well as temporal scales, from monthly, seasonal and annual to decadal time periods.

The model comparison was conducted on the same glaciers as in MBM’s test dataset (Sect. 3.3.1), but using available
observations for the common modelling period 1980-2019 (Table 2). Over this period, glaciological observations (point and
glacier-wide) are available for 11 of the 14 glaciers in the test dataset (three glaciers only have measurements from the 1960s
and 70s). We chose to compare the models on these glaciers since they provide independent and rigorous performance measures
for MBM, i.e. no data from the test glaciers have been used for MBM training. For all models, annual, winter and summer
mass balance predictions were computed by aggregating monthly mass balances over the hydrological year (Oct-Sept), winter
months (Oct—Apr) and summer months (May—Sept), respectively. With regards to comparison with point measurements, it
should be noted that the glacier evolution models provide mass balance averaged over elevation bands rather than in grid cells.
GloGEM and OGGM have fixed elevation band intervals, and we extracted the modelled mass balance from the elevation band
corresponding to the elevation of each point mass balance measurement. PyGEM results are given in fixed distances along the

glacier flowline such that steeper parts of the glacier cover a wider elevation interval.
4.2 Glacier evolution models

The three glacier evolution models were all run for RGI region 8 (Scandinavia) using RGI 6.0 outlines and a constant glacier
area (no glacier dynamics). The RGI 6.0 outlines for Norway are derived from 1999-2006 satellite imagery (Andreassen et al.,
2012). Mass balance was predicted on a monthly time scale and for bins along flowlines or in elevation bands, using between
one and three degree-day factors to simulate melt on the glacier surface (Table 2). As climate forcing, GloGEM and PyGEM
uses ERAS (Hersbach et al., 2020), while OGGM uses W5ES5 (bias-corrected ERAS over land; Lange et al., 2021). Parameter

11



265

270

https://doi.org/10.5194/egusphere-2025-1206
Preprint. Discussion started: 31 March 2025
(© Author(s) 2025. CC BY 4.0 License.

EGUsphere\

Table 2. Overview of the set-up of glacier evolution model simulations used for model intercomparison. All models use RGI 6.0 and
constant area over the simulation period. Calibration is performed for each glacier individually, using geodetic mass balance for 2000-2019

from Hugonnet et al. (2021). The time period refers to mass-balance years (Oct—Sept) covered by the simulations. DDFs refers to degree day

factors, and Pcorr and Teorr refer to precipitation and temperature bias correction, respectively.

Model Time Spatial Climate  Temperature Precipitation DDFs Parameters Reference
period resolution forcing downscaling downscaling calibrated
GloGEM  1980- 10 m ERA5® Monthly lapse Vertical Separate DDF  Pco,r, Huss and Hock
2019 rate for each gradient for snow, ice, DDFgnow, (2015)
reanalysis grid ~ 0.025% m™*! firn? DDFjc.©
cell®
OGGM 1961- 30 m WS5E5? Lapse rate None Single DDF Pcorr, Tcorr, ~ Maussion et al.
2019 6.5Kkm™ ! DDF (2019); Zekollari
et al. (2024)
PyGEM 1961- 30 m* ERA5? Monthly lapse Vertical Separate DDF  Pcorrs Tcorr,  Rounce et al.
2022 rate for each gradient for snow, ice, DDanowf (2023)
elevation bin® 0.01% m™* firn?

@ Mass balance is provided along flowlines. bMonth]y temperature and precipitation. “Derived from ERAS5 pressure levels. 4DDFyiyy, is average of DDFgpow and DDFice. “Toorr

if no match is found with other parameters within predefined bounds. f DDFj set to 0.7DDFsp,ow -

values were calibrated at the individual glacier scale using geodetic mass balance for the period 2000-2019 (Hugonnet et al.,

2021). Depending on the model, three to four free parameters were calibrated. The set-up of each model is detailed in Table 2.
4.3 Glacier-wide predictions using MBM

Glacier-wide predictions were produced for MBM with the same set of features as described in Sect. 3.2. For each test glacier,
a DEM (Copernicus DEM GLO-90, ~90 m resolution) and RGI 6.0 outline were retrieved using the OGGM pipeline. Then, for
each DEM grid cell, monthly meteorological features were obtained from the nearest ERAS-Land cell for 1962-2021. MBM
was then run for each glacier to predict the monthly mass balance in every DEM grid cell over the whole time period based
on the topographical and monthly meteorological features. Glacier-wide monthly mass balance predictions were produced by

intersecting the DEM with the RGI 6.0 glacier outline and aggregating predictions over the glacierised area.

5 Results

In this section, we present the performance evaluation of MBM on the test dataset and the comparison of MBM and the glacier
evolution models (GloGEM, OGGM and PyGEM). In Sect. 5.1 we focus on the performance of MBM on the full test dataset of

seasonal and annual point mass balance measurements (14 glaciers, 1962-2021) described in Sect. 3.3.1. Section 5.2 compares
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the performance of MBM and glacier evolution models at various spatio-temporal scales using available glaciological and

geodetic observations for the test glaciers (1980-2019).
5.1 Performance of MBM on test dataset

The performance of MBM is assessed using the full test dataset from 14 glaciers with in situ mass balance observations. It
consists of seasonal and annual point mass balance measurements over the period 1962-2021. MBM shows good performance
in predicting both seasonal and annual point mass balances in this test dataset (Figs. 5 and C2, performance on training dataset
shown in Fig. C1). Winter mass balance is modelled particularly well, with the lowest RMSE and MAE (0.59 and 0.46 m w.e.;
Fig. 5a and b). Summer mass balance is also well captured, and here MBM shows good performance in terms of R? (explained
variance, 0.72; Fig. 5e). MBM shows somewhat lower performance for annual mass balance in terms of RMSE and MAE (1.00
and 0.77 m w.e.; Fig. 5c), compared to seasonal mass balances, but still with a minimal overall bias (-0.01 m w.e.; Fig. 5d).
Overall, the performance of MBM over time is relatively stable, with mean annual and seasonal biases centred around zero
(-0.01—+0.04 m.w.e; Fig. 5b, d and f). The second half of the 1970s and 1980s displays some positive bias, but the test dataset
contains few measurements in this time period.

Considering point mass balance for glaciers individually (Fig. C2), modelled and observed point mass balances are generally
in good agreement, but the performance of MBM varies somewhat between glaciers. It is difficult to compare metrics across
glaciers directly due to the different number of point measurements available and varying time periods covered. However, the
results do not indicate any particular issues related to climatic region (e.g. continentality in southern Norway or northern versus
southern glaciers). Therefore, we are confident that MBM is well suited to capture seasonal and annual point mass balance on

glaciers in a wide range of geographical settings in Norway.
5.2 Model comparison on different spatio-temporal scales

We compare predictions from all models (MBM, GloGEM, OGGM and PyGEM) to available glaciological and geodetic
mass balance observations for glaciers in the test dataset over the common modelling period 1980-2019. In Sect. 5.2.1 and
Sect. 5.2.2, we consider point/elevation-band mass balance and mass balance gradients, respectively, on seasonal and annual
time scales. Glacier-wide mass balances are compared in Sect. 5.2.3 on monthly to decadal time scales. We evaluate glacier-
wide predictions using seasonal and annual glacier-wide observations from glaciological records (Kjgllmoen et al., 2024),
and decadal predictions using glacier-wide glaciological and geodetic (Andreassen et al., 2016, 2020; Hugonnet et al., 2021)
observations. Over the common modelling period 1980-2019, glaciological observations (point and glacier-wide) are available
for 11 of 14 test glaciers with partial temporal coverage. Geodetic observations are available for all 14 glaciers over the
period 2000-2019 (Hugonnet et al., 2021), and six sub-periods for four glaciers between 1980-2020 (with an additional six
sub-periods and four glaciers back to the 1960s for comparison to MBM only; Andreassen et al., 2016, 2020).
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Figure 5. Performance of the Mass Balance Machine on the test dataset of glaciological point mass balance (14 glaciers, 1962-2021), in
terms of histograms of errors and temporal biases, respectively, in modelled (a, b) winter, (c, d) summer and (e, f) annual point mass balance.
Notations b,,, bs, and b, refer to winter, summer and annual point mass balance, respectively. Points and shaded areas in panels b, d, and f
represent the mean and spread of the bias for each year, respectively. Metrics RMSE and MAE in panels a, ¢c and d are in m w.e., and n in

panels refers to the number of point measurements.

5.2.1 Point/elevation-band mass balance

Of all models, MBM shows the best performance with respect to winter and summer point mass balance across all met-
rics (Fig. 6). Notably, MBM shows very low biases in seasonal mass balance (-0.05 and +0.10 m w.e. for winter and sum-
mer, respectively) compared to the glacier evolution models, which show considerable positive or negative biases (+0.26/-
0.35/+0.59 m w.e. and -0.27/+0.29/-0.27 m w.e. for OGGM/GloGEM/PyGEM for winter and summer, respectively). Large
positive winter mass balances (> around 2 m w.e.) are particularly well-captured by MBM (Fig. 6a), whereas these are under-
estimated for GloGEM (Fig. 6¢) and overestimated by OGGM and PyGEM (Fig. 6b and d).

GloGEM and OGGM show the overall best performance on annual point mass balance (RMSE of 0.91 and 0.93 m w.e.,
respectively), but differences between models are relatively small (RMSE of 0.97 and 1.05 m w.e. for MBM and PyGEM,
respectively). MBM, GloGEM and OGGM all show low biases (between -0.02 and +0.02 m w.e.), whereas PyGEM displays
a relatively large bias in annual point mass balance (+0.36 m w.e.). It should be noted here that MBM is the only model that

provides predictions at the point scale, while the other models simulate elevation-band mass balance.
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Figure 6. Modelled point (Mass Balance Machine) or elevation-band (other models) mass balance versus measured point mass balance for
the test glaciers for (a) Mass Balance Machine, (b) OGGM, (c) GloGEM and (d) PyGEM, using all available in situ point mass balance
observations (n=561/517/516 for annual/winter/summer) over the common model time period 1980-2019. Subscripts a, w and s in legend

and metrics refer to annual, winter and summer mass balance, respectively.

5.2.2 Mass balance gradients

MBM captures mass balance gradients across test glaciers in various climatic settings, from northern Norway (Fig. 7a and b)
to the west-east transect in southern Norway (Fig. 7c—f). Mass balance gradients are reproduced particularly well for glaciers
in northern and western Norway (Fig. 7a—d). For the most maritime and continental glaciers, modelled mass balance gradi-
ents show somewhat larger discrepancy with respect to glaciological observations, for example, positive biases in annual and
summer mass balance for high elevations on Hansebreen (Fig. 7e) and in winter mass balance for Hellstugubreen (Fig. 7f).
However, it should be noted that for Hellstugubreen, mean elevation-band mass balances are based on only 14 stake locations
measured over a total of five years, and there are no in situ observations available to investigate model performance at high

elevations.
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Figure 7. Modelled mean annual (black), winter (blue) and summer (red) mass balance gradients for the Mass Balance Machine (solid lines,

with shaded areas showing minimum and maximum predicted elevation-band mass balance between 1980-2019), GloGEM (dashed-dotted

lines), OGGM (dashed lines) and PyGEM (dotted lines) for selected test glaciers in different climatic regions over the common period 1980—

2019. Circles represent the mean measured mass balance in each 100 m elevation band from available observations over the period. Numbers

in subplot titles refer to the last five digits of the RGI 6.0 ID, and abbreviations refer to glacier regions (FIN: Finnmark, BLA: Blamannsisen,
JOB: Jostedalsbreen, FOL: Folgefonna, ALF: Alfotbreen and JOT: Jotunheimen).

Overall, MBM better captures the relationship between mass balance and elevation than the glacier evolution models over

the common period 1980-2019. Again, MBM performs particularly better for seasonal mass balances compared to the glacier

evolution models (RMSE/bias of 0.41/+0.1 and 0.60/0.00 m w.e. for MBM for winter and summer, respectively, and best com-

bined scores of 0.56/-0.2 and 0.65/-0.18 m w.e. across other models), while the agreement for annual mass balance gradients is

16



330

335

340

345

350

355

360

https://doi.org/10.5194/egusphere-2025-1206
Preprint. Discussion started: 31 March 2025 EG U
sphere

(© Author(s) 2025. CC BY 4.0 License.

more variable (RMSE/bias of 0.83/+0.08 m w.e. for MBM, and best scores of 0.86/+0.14 m w.e. for other models combined).
In general, the glacier evolution models exhibit more linear mass balance gradients than MBM, which in some cases prevents

them from capturing the variability in mass balance with elevation (e.g. Svelgjabreen; Fig. 7d).
5.2.3 Glacier-wide mass balance

All models show similar performance in predicting glacier-wide annual mass balance over the common modelling period
1980-2019 (Fig. 8), with MBM performing slightly better in terms of RMSE and R? (RMSE of 0.54 m w.e. and R? of 0.75;
Fig. 8a) and OGGM showing the lowest bias (+0.02 m w.e.; Fig. 8b). There are notable differences in model performance on
glacier-wide seasonal mass balance, with MBM outperforming the other models for all metrics and showing particularly better
performance for extreme values (high magnitudes). Overall, glacier-wide winter and summer mass balances are overestimated
by OGGM and PyGEM (positive and negative bias for winter and summer, respectively; Fig. 8b and d) and underestimated by
GloGEM (negative and positive bias for winter and summer, respectively; Fig. 8c).

We evaluate model performances for different regions by aggregating area-weighted glacier-wide mass balance predictions
and available glaciological observations over the period 1980-2019 (Fig. C3). Here, we focus on regions North (N) and West
(W) (five and six glaciers, respectively; Fig. C3a and c), since an assessment of model performance on regional mass balance
is difficult for the most maritime (W-MAR) and continental (E) regions, where glaciological measurements are limited to
one and two glaciers in each region, respectively (Fig. C3b and d). All models show relatively good agreement with annual
mass balance for region West, where the mass balance rate from glaciological observations over the period 1988-2019 is
-0.38 m w.e. a—!, compared to -0.35 m w.e. for MBM, -0.31 m w.e. a~! for GIoGEM, -0.46 m w.e. a—! for OGGM and
-0.22 m w.e. a~* for PyGEM (Fig. C3c). The same is true for region North, with MBM displaying the best correspondence
to glaciological observations over the consecutive period 1996-2019 (-0.97 m w.e. a~!, versus -0.93 m w.e. a~* for MBM,
-0.59 m w.e. a~! for GIoGEM, -0.80 m w.e. a~* for OGGM and -0.62 m w.e. a~! for PyGEM; Fig. C3a). However, all models
show a tendency to underestimate annual mass balance around the 2000s in this region, mostly due to too positive summer
mass balance. Considering seasonal mass balance, OGGM and PyGEM show a clear tendency to overestimate magnitudes
of winter and summer mass balance in region West, while MBM and GloGEM show good agreement with observations. For
region North, all models show decent correspondence with winter mass balance. GloGEM shows a tendency to underestimate
summer mass balance in the 1990s and 2000s in this region, but better agreement with observations in the 2010s compared to
the other models.

We compare monthly glacier-wide mass balance predictions from the four models over the mass balance years 1980-2019
(Fig. 9). Since there are no available mass balance observations at this temporal resolution, we compare monthly glacier-wide
predictions for all 32 glaciers in the dataset (15360 predictions per model). For most months, the models show similar mass
balance distributions with mostly positive mass balances in Nov—Apr, negative mass balances in Jun—Aug, and both positive
and negative mass balances in the transition months May and Sep. This similarity is strongest for Jan—Apr and Oct-Dec.

For the summer months, MBM and GloGEM display more moderate mass losses compared to OGGM and PyGEM. MBM’s
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Figure 8. Modelled versus observed glacier-wide seasonal and annual mass balance for the test glaciers for (a) the Mass Balance Machine,
(b) OGGM, (c) GloGEM and (d) PyGEM, using all available glaciological observations over the common model time period 1980-2019
(180 mass-balance years on 11 glaciers). Subscripts a, w and s in legend and metrics refer to annual, winter and summer mass balance,

respectively.

predictions differ somewhat from the other models in the transition months (May and Sep), with a larger number of negative
mass balances (see further discussion in Sect. 6.1).

Predicted decadal mass balance rates from MBM show good agreement with decadal rates from glaciological records for
most decades (RMSE of 0.26 m w.e.a~! and bias of -0.1 m w.e.a~! for four glaciers covering 13 decades in total between
1970-2019; Fig. 10a, f, h and m, 1970-1979 not shown for Hellstugubreen, RGI60-08.00449). In general, MBM and the
glacier evolution models show similar mass balance rates for many glaciers and decades. However, MBM shows consistently
lower mass balance rates for some glaciers, e.g. Langfjordjgkelen, Trollbergdalsbreen and Svartisheibreen (all in northern
Norway; Fig. 10a, d and e, respectively), and slightly more positive mass balance rates than the glacier evolution models for

others, e.g. Bondhusbrea and Blomstglskardsbreen (Folgefonna; Fig. 10i and 1, respectively).
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Figure 9. Distributions of glacier-wide monthly mass balance for all 32 training and test glaciers for each month and model over the common

time period 1980-2019 (mass-balance years; 15360 monthly predictions per model).

In general, glacier evolution models show a better correspondence with decadal geodetic mass balance rates from satellite-
derived DEMs (Hugonnet et al., 2021), which is unsurprising given that these observations are used in model calibration.
Specifically, MBM overestimates geodetic mass balance for Bondhusbrea, Mgsevassbrea and Blomstglskardsbreen (Fig. 10i,
k and 1, respectively) and underestimates for Langfjordjgkelen and Trollbergdalsbreen (Fig. 10a and d, respectively) when
comparing to satellite-borne geodetic mass balance. However, considering geodetic mass balances based on photogrammetry
and laser scanning (Andreassen et al., 2016, 2020), MBM shows good correspondence for Langfjordjgkelen (1994-2008;
Fig. C4). Overall, all models show decent agreement with geodetic mass balance for Austdalsbreen (region W; 1988-2009)
and Hellstugubreen (region E; 1980-1997 and 1997-2009), but variable performance on Hansebreen (region W-MAR; 1988—
1997 and 1997-2010). In addition, MBM shows good agreement for four of six extended periods, including Hellstugubreen
(1968-1980), Svartheiisbreen (region N; 1968-2016), Tunsbergdalsbreen (region W; 1964-2013) and Austre Memurubreen
(region E; 1966-2009).
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Figure 10. Modelled decadal glacier-wide mass balance rates for each test glacier and model over decadal periods (80s: 1980-1989, 90s:
1990-1999, 00s: 2000-2009, 10s: 2010-2019). Decadal geodetic mass-balance rates with reported error estimates from Hugonnet et al.
(2021) are shown as black dots with error bars for the periods 2000-2009 and 2010-2019. Decadal mass balance rates from glaciological
records are shown as purple triangles where available. The upper right corner of each panel provide the last five digits of the RGI 6.0 glacier
ID and the climatic (N: north, W-MAR: west-maritime, W: west, E: east) and glacier (FIN: Finnmark, SKJ: Skjomen, BLA: Blamannsisen,
SVA: Svartisen, ALF: Alfotbreen, JOB: Jostedalsbreen, FOL: Folgefonna, JOT: Jotunheimen) regions. Glaciers are ordered from north to

south and maritime to continental.

6 Discussion

6.1 Performance of MBM and glacier evolution models across spatio-temporal scales

6.1.1 Generalisation through spatio-temporal analogues and downscaling

The ability of MBM to reconstruct glacier mass balance on various spatial and temporal scales demonstrates that ML ap-

proaches have the capacity to generalise from mass balance observations at high spatio-temporal resolution and transfer the
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established relationships to independent (unmonitored) glaciers. We believe that the success of MBM is due to its ability to
learn from spatio-temporal analogues in training, i.e. similar glacier configurations and/or meteorological conditions across
space and time. For example, an abnormally wet winter season on a glacier in northern Norway may be similar to average
conditions on a glacier on the west coast of southern Norway, or when a large valley glacier retreats under climate change, its
topo-climatic conditions may resemble those of current small, high-altitude glaciers. Using these spatio-temporal analogues,
MBM can learn relationships between mass balance and meteorological conditions across diverse climatic settings from rela-
tively sparse data.

MBM effectively downscales and bias-corrects relatively coarse meteorological data to the point scale. In addition to the
spatio-temporal transfer of mass balance information across glaciers, MBM’s downscaling capacity is crucial for generating
accurate high-resolution predictions. For instance, as accumulation is primarily governed by precipitation and temperature,
MBM'’s strong performance in reconstructing winter mass balance at the stake level (Fig. 5a and b) shows its ability to down-
scale these variables locally. The key to MBM’s downscaling abilities lies in using the elevation difference between the stake
and the climate model as a feature (Fig. 3) which enables MBM to effectively map the relationship between climate and

elevation.
6.1.2 Model evaluation at different spatio-temporal resolutions

The comparison of monthly mass balance (Fig. 9) highlights MBM’s ability to make meaningful predictions at a finer temporal
resolution than its training data. The largest discrepancy between MBM and the glacier evolution models is observed in May
and September, where MBM predicts more negative mass balances. MBM’s predictions in these months may be influenced
by the definitions of winter and summer seasons, which are based on the median day of the year of the point mass balance
measurements in the dataset (5 May and 31 September for winter and annual mass balance measurements, respectively).
However, this definition varies in its alignment with the actual measurement dates, which differs across glaciers and years,
potentially leading MBM to compensate with more or less melt or accumulation in the transition months. Improving MBM’s
monthly predictions could involve using variable season lengths and mass-balance years based on the specific measurement
dates in the training data. Nevertheless, when monthly mass balances are aggregated on seasonal scales, MBM shows superior
capability in capturing winter and summer mass balance compared to the glacier evolution models across all spatial scales
(Figs. 6, 7, 8 and C3).

The ability of MBM to reconstruct winter and summer mass balance on independent glaciers highlights its advantage in
leveraging seasonal mass balance observations to derive relationships that can be transferred to unmonitored glaciers. On
annual mass balance, however, the models show similar performance. With respect to this, it is important to note that the glacier
evolution models are calibrated using geodetic observations (i.e. information on cumulative mass changes over multiple years)
for each test glacier. Meanwhile, for MBM, the test glaciers serve as independent performance measures across all spatio-
temporal scales. Consequently, MBM’s performance solely reflects its capacity to generalise to unmonitored glaciers across

varying conditions.
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Given the calibration of glacier evolution models with decadal geodetic mass balance rates from Hugonnet et al. (2021),
it is unsurprising that their correspondence to these observations is better than MBM (Fig. 10), which have not used these
observations for training. However, we approach this comparison cautiously, since elevation-change rates from Hugonnet et al.
(2021) have been found to be substantially lower than those from repeat airborne laser scanning (LiDAR) surveys in Norway
(two glaciers, one of which is Austdalsbreen; Fig. 10h; Andreassen et al., 2023). The quality of these geodetic observations
likely varies between glaciers. For example, for Trollbergdalsbreen (Fig. 10d) MBM shows good performance on point mass
balance (Fig. C2d), suggesting that the discrepancy between models may be due to a positive bias in geodetic mass balance
from Hugonnet et al. (2021). On the other hand, for Svartisheibreen (Fig. 10e), MBM likely underestimates decadal mass
balance rates, as indicated by its relatively strong negative bias on point mass balance for this glacier (Fig. C2e, respectively).
Considering Langfjordjgkelen, the performance of MBM seemingly varies over time, since comparisons show both underesti-
mation for some periods and good agreement for others (Figs. 10a, C4 and C2a). However, in decadal comparisons it should
be noted that glaciological and geodetic mass balances are not directly comparable, since the latter also include contributions
from internal and basal processes that are not accounted for by the models (Zemp et al., 2013; Andreassen et al., 2016, 2023).
In addition, when comparing model results to geodetic mass balance from (Andreassen et al., 2016, 2020), predictions are not
exactly aligned with survey dates, but aggregated based on the nearest month. For example, for Hansebreen this discrepancy
may result in 14 days of more or less melt from the survey date in August 1997, which could be significant considering the high
mass turnover of this glacier. This may explain why most models show underestimation and overestimation of the geodetic
mass balance rates for 1988—1997 and 1997-2010, respectively (Fig. C4).

6.2 MBM design choices and limitations
6.2.1 Quality of training data

The quality of ML model predictions is strongly dependent on the quality of the training data, both targets (discussed in
Appendix A) and features. While MBM performs well in bias-correcting and downscaling meteorological variables to the el-
evation of the stakes, it is not always able to perform this downscaling seamlessly for glaciers that span several ERAS5-Land
grid cells. For example, Tunsbergdalsbreen (RGI60-08.00434), Norway’s largest outlet glacier (46.2 km? in 2019; Andreassen
et al., 2022), is covered by multiple grid cells (Fig. 11d and e), resulting in visible artefacts in the mass balance distribution
in some years due to transitions between the uppermost cells (winter and annual mass balance in year 2000; Fig. 11a and b,
respectively). These artefacts may occur due to elevation differences not being well represented in the training data, possibly in
combination with special meteorological conditions (e.g. decreasing precipitation amounts with elevation, Fig. 11d and f). The
relatively coarse resolution of ERA5-Land compared to the extent of most glaciers in our dataset also means that the spatial
distribution of mass balance is largely influenced by the higher-resolution topographical information that can resolve smaller-
scale variations. Artefacts in the topographical data may, therefore, influence predictions, for example, the high melt rates along
the border on the tongue of Tunsbergdalsbreen (Fig 11c). Here, MBM predicts more negative mass balance for the combination

of steep and south-facing slopes (Fig 11g and h). However, these artefacts likely result from the calculation of slope and aspect

22



455

460

https://doi.org/10.5194/egusphere-2025-1206
Preprint. Discussion started: 31 March 2025 EG U
sphere

(© Author(s) 2025. CC BY 4.0 License.

(@) (c) Bs
61.65 -
61.60 - s g -1 5 E Oy
8 3 -43 %
_ -4 =2 _ -6 =
o155 |74 ut
T T T T
(d) ERA5-Land | [(e) ERA5-Land | |(f) Elevation
61.65 - prec sum | 4 temp |
[J]
©
2 61.60 - .
T N -m
— 3 2 g
61.55 - 3 e 2 §
T T T T T T
() (i) Skyview
61.65 — - factor
61.60 - " -
049
022
61.55 - ] -1
0.0S
1 I 1 1 I I
7.0 7.1 7.0 7.1 7.0 7.1
Longitude

Figure 11. Distributed (a) annual, (b) winter and (c) summer surface mass balance (B,, B, and By, respectively, in m w.e.) for Tuns-
bergdalsbreen (RGI60-08.00434) in 2000, and selected features: (d) ERAS-Land total precipitation (tp, in mm w.e.) and (e) temperature
(2m, in degC) in February, (f) elevation, (g) slope, (h) aspect and (i) skyview factor (svf, dimensionless).

arising from the influence of the steep terrain surrounding the tongue. The issues outlined here may be mitigated by extracting
meteorological variables from a single ERA5-Land cell closest to the glacier centre or higher-resolution meteorological data.
Regardless of these challenges, MBM’s implicit downscaling and bias correction of meteorological variables excel in recon-
structing local winter mass balance (Figs. 6 and 7). This suggests, in line with other findings (Guidicelli et al., 2023), that ML

models are valuable tools to assess spatio-temporal biases in precipitation estimates in mountain regions.

6.2.2 Design of test dataset

In addition to the quality of the data used in model training, the predictions and performance evaluation of MBM will be affected
by our design of the test dataset and the cross-validation strategy. Although we have attempted to design our test dataset as a
reliable measure of our modelling goal, it is not without flaws. For example, the independence between the test and training
dataset can be questioned for some glaciers, e.g. for glaciers in the maritime western region of Norway (W-MAR, Fig. 1d).
There are only two glaciers from this (small) region in our dataset, of which Alfotbreen is in the training dataset and Hansebreen

(Fig. C2f) is in the test dataset. These glaciers are adjacent, and the spatial correlation between measurements likely extends

465 beyond the ice divide. However, the current configuration is necessary to both train MBM and evaluate its performance in this
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climatic region. We encourage future studies using ML approaches to carefully design test datasets using domain knowledge
such that performance estimates align with the modelling objectives. However, as illustrated by our example, limitations in the

dataset will inevitably require compromises in test dataset design (Roberts et al., 2017).
6.2.3 MBM architecture

MBM was designed using the XGBoost architecture due to its excellent performance on tabular datasets (Grinsztajn et al.,
2022). However, a known issue with regression tree-based models is that they tend to perform poorly at extrapolation, making
them unreliable in accurately capturing extreme conditions beyond their training data (e.g. van der Meer et al., 2025). In the
design of the train-test split, we ensure that the training dataset includes years of both high melt and accumulation across a
variety of glaciers and climatic settings. As such, MBM is explicitly designed for interpolation rather than extrapolation. Con-
sequently, MBM shows good performance on high magnitudes of winter and summer balances in the test dataset (Figs. 6 and
8). While this approach is appropriate for mass balance reconstruction, making future predictions under potentially unprece-
dented conditions may require a different ML architecture with better extrapolation capabilities, such as a neural network (e.g.

Bolibar et al., 2022).
6.3 Future outlook on ML in large-scale mass balance modelling
6.3.1 Applications of MBM

The ability of MBM to accurately predict seasonal mass balance makes it particularly suitable for hydrological applications,
especially in glacierised catchments where seasonal observations for glacier-specific calibration of other models are lacking.
Another promising application of MBM is to generate distributed mass balance predictions as input to ice flow models. MBM’s
predictions can account for a changing surface topography simply by updating the topographical features prior to a new
prediction. The differentiability of many ML approaches also presents a promising scientific venue in terms of building modern
physics-informed ML glacier models. The MBM architecture could be replaced by a neural network, which would provide
differentiability, thereby enabling the synchronised calibration and inversion of both glacier ice flow dynamics and surface
mass balance. Moreover, the spatial resolution of MBM’s predictions is adaptable and determined only by the resolution of
the DEM used to extract topographical features. The temporal resolution of MBM is also customizable and can be adapted
to produce, for example, weekly or seasonal predictions depending on the desired resolution and computational resources.
In our study, we have focused on training MBM for a larger region, leveraging the capacity of ML models to generalise
mass balance information to unobserved glaciers. However, MBM can also be tailored to estimate glacier-wide mass balance
from glaciological surveys at the individual glacier scale. This may improve glacier-wide glaciological mass balance estimates
compared to traditional methods used to interpolate and extrapolate point measurements (e.g. altitude-profile method used in

glaciological surveys in Norway; Kjgllmoen et al., 2024).
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6.3.2 Reconciling glacier mass balance by learning from diverse datasets

MBM is a scalable model with the potential to be extended to larger regions. We have demonstrated that MBM can capture
the spatio-temporal heterogeneity in mass balance for glaciers across climatically diverse regions in Norway. Notably, MBM’s
current design does not use explicit information about space or time, such that it can essentially be applied at any location and
period. However, since the model is trained on meteorological conditions specific to Norway and designed for interpolation,
we expect its performance be limited in regions with significantly different climates. Since in situ observations are not readily
available for many regions, the diversity of spatio-temporal analogues and extent of MBM’s generalisation capabilities on
larger scales remain to be investigated.

On the other hand, the purely data-driven nature of ML approaches make them uniquely suited to take advantage of the
increasing availability of remote sensing datasets which could both alleviate the scarcity of in situ training data and improve
model predictions. In this respect, ML approaches present novel tools for reconciling mass balance estimates from the growing
archive of glacier observations, since their flexibility allows for integration of datasets at different spatio-temporal scales in
training. We have demonstrated one such approach that leverages observations at different temporal resolutions by training
MBM to fit aggregations of monthly mass balance to seasonal and annual targets. Similarly, geodetic mass balance observations
(e.g. Hugonnet et al., 2021), could be incorporated into MBM’s training by aggregating predictions on glacier-wide and decadal
scales. Moreover, model training can account for the reliability of the data by weighing the observations in the loss function
according to their confidence levels. Incorporating diverse and complementary datasets could provide reconciled estimates of
glacier mass balance across multiple observational datasets.

Our findings show that ML-based mass balance models have significant potential due to their flexibility and capacity to
generalise across diverse glaciers, capabilities that complement existing models. As demonstrated here, ML approaches show
promise in overcoming some of the limitations of current temperature-index approaches and existing calibration frameworks.
ML approaches are posed to leverage both existing data as well as growing observational resources from satellite remote sensing
to enhance glacier mass balance estimates. In light of our findings, we argue that ML models have significant unexplored

potential in glacier mass balance modelling that warrants further investigation.

7 Conclusions

This study presented the Mass Balance Machine (MBM), an ML model designed to reconstruct glacier mass balance up to
a point scale and with monthly temporal resolution from topographical and meteorological features. MBM was trained on
seasonal and annual glaciological point mass balance measurements from glaciers in various climatic settings in Norway,
covering the period 1962-2021. MBM showed good performance in reconstructing glacier mass balance on point to glacier-
wide scales for independent glaciers in Norway, demonstrating its ability to generalise spatio-temporal information from sparse
data to unmonitored glaciers.

The predictions of MBM were compared to established large-scale glacier evolution models GloGEM, OGGM and PyGEM

applied at a regional scale and using current state of the art calibration frameworks. While models showed similar performance
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on annual mass balance, MBM was superior in predicting seasonal mass balance both at point and glacier-wide scales. This
success can be attributed to MBM’s ability to effectively transfer information from relatively sparse seasonal point mass balance
observations to unmonitored glaciers. The accuracy of MBM’s seasonal predictions suggests that it can improve predictions of
seasonal glacier runoff and thus enhance hydrological modelling in glacierised regions without in situ observations.

The flexibility of ML approaches and their data-driven nature make them uniquely posed to reconcile glacier mass balance
from both existing and novel satellite-derived observational datasets at different spatio-temporal scales. We demonstrated that
ML models can be adapted to utilise observations at different temporal resolutions by training MBM to fit aggregations of
monthly mass balance to seasonal and annual targets. However, there is still significant untapped potential to improve MBM’s
predictions by incorporating additional data, such as geodetic mass balance observations, in its training.

The ability of ML approaches to learn statistical relationships that are transferable in space and time from high-quality
observational datasets provides opportunities to improve mass balance estimates for unmonitored glaciers. Our findings reveal
the promise of these approaches in addressing some of the limitations of existing large-scale mass balance models. We advocate
for further exploration and development of ML-based mass balance models in order to clarify their contribution to improving

glacier mass balance predictions.
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Appendix A: Data quality and cleaning

The target data for MBM comes from the glaciological records in Norway, many of which have been reanalysed in recent
years (Andreassen et al., 2016; Kjgllmoen, 2017, 2022a, b), including comprehensive uncertainty assessments. Uncertainties
in stake measurements originate from various sources, such as probing to the previous year’s summer surface, displacement
and tilting of stakes and errors in snow and firn densities (Zemp et al., 2013). The total contribution of such uncertainties have
been quantified 0.08-0.26 m w.e. a—! for five of the glaciers in our dataset (Andreassen et al., 2016), and are considered to
be of the same order of magnitude for others (Kjgllmoen, 2017). Although errors may occur, glaciological point mass balance
records are considered to be of good quality for most glaciers such that we can be confident that MBM is trained on reliable
target data.

Prior to training MBM, we performed a thorough cleaning and quality check of the raw point mass balance dataset (4201
entries, NVE database accessed on 12 October 2022), including removal of erroneous values and points with missing location,
and a quality check of stake locations. For each of the point mass balance measurements, the raw data provided an exact and/or
approximate stake location (geographical coordinates and elevation). Approximate locations are based on the approximate
position and elevation of a given stake ID, whereas exact locations are based on the position and elevation of the stake at the
time of measurement (e.g. measured using GPS). Position accuracy can vary, in particular for some of the older data.

Seven and 23 entries that were missing both exact and approximate elevation or geographical coordinates, respectively,
were removed from the training dataset. For measurements where only the exact location was unavailable, we used the pro-
vided approximate locations (329 instances of coordinates and 37 instances of elevation). We estimated the accuracy of the
approximate locations based on the 3723/4156 entries where both exact and approximate coordinates/elevations were given.
The mean =+ standard deviation of the absolute difference between the exact and approximate coordinates and elevations is
166 £ 498 m and 24 + 71 m, respectively. Thus, for the relatively few measurements missing exact location, we are confi-
dent that the approximate coordinates and elevations provide decent estimates of their actual locations. Finally, we converted
geographical coordinates from UTM to latitude and longitude format.

For stake locations where both summer, winter and annual mass balance measurements were available for a given year, we
corrected for rounding errors where these were present by replacing annual mass balance values by the sum of seasonal values.
One measurement with erroneous winter mass balance (9.99 m w.e.) was removed. The total number of annual, summer and

winter point mass balance observations after cleaning was 3910, 3929 and 3751, respectively, at a total of 4170 stake locations.

Appendix B: Feature selection

Our choice of features is based on increasing the explainability of MBM by capturing underlying meteorological drivers and
avoiding the model learning relationships through confounding features. We selected features that impact the energy balance
on the glacier surface and intentionally refrained from using variables that are derived from meteorological conditions, such as
snow depth, snow cover and snow melt. The reason behind this is that many meteorological variables in ERA5-Land are highly

correlated. For example, snow depth and snow melt are highly correlated with total precipitation and 2 m air temperature,
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respectively. We found that such variables mask the underlying meteorological drivers. As an illustration, when including
snow depth as a feature, the total precipitation becomes redundant, although it is an important driver of the evolution of the
snow pack. We did not see a noticeable difference in performance when using a larger set of derived variables and, therefore,
opted not to use them both for clarity and simplicity.

We deliberately avoided using explicit temporal and spatial information (e.g. year and geographical coordinates) as features
in MBM. Since climate and space are correlated, spatial predictors may mask underlying meteorological drivers (Roberts et al.,
2017). In addition, the use of geolocation data may lead to over-fitting to spatial location (Roberts et al., 2017; Meyer et al.,
2019), thus deteriorating model predictions outside of the spatial domain on which it is trained. Moreover, we believe that
explicit information about time and space (e.g. year and geographical coordinates) should be irrelevant if the model is able to
capture mass changes from meteorological features. In contrast to other ML studies using high spatial resolution mass balance
data across multiple glaciers (Anilkumar et al., 2023; Guidicelli et al., 2023), we employ a relatively small set of features (e.g.

seven compared to the fourteen used by Anilkumar et al., 2023).
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Appendix C: Additional figures
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Figure C1. Performance of the Mass Balance Machine on the training dataset of glaciological point mass balance (18 glaciers, 1962-2021),
in terms of histograms of errors and temporal biases, respectively, in modelled (a, b) winter, (c, d) summer and (e, f) annual point mass
balance. Notations b,,, bs, and b, refer to winter, summer and annual point mass balance, respectively. Points and shaded areas in panels b,
d, and f represent the mean and spread of the bias for each year, respectively. Metrics RMSE and MAE in panels a, ¢ and d are in m w.e., and

n in panels refers to the number of point measurements.
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Figure C2. Performance of the Mass Balance Machine on individual glaciers in the test dataset of glaciological point mass balance (14
glaciers, 1962-2021), in terms of modelled versus measured point mass balance. Subscripts a, w and s in Root Mean Squared Error (RMSE)
refer to annual, winter and summer mass balance, respectively. The upper right corner of each panel provide the last five digits of the RGI
6.0 glacier ID and the climatic (N: north, W-MAR: west-maritime, W: west, E: east) and glacier (FIN: Finnmark, SKJ: Skjomen, BLA:
Blamannsisen, SVA: Svartisen, ALF: Alfotbreen, JOB: Jostedalsbreen, FOL: Folgefonna, JOT: Jotunheimen) regions. Glaciers are ordered
from north (FIN) to south (FOL) and maritime (ALF) to continental (JOT).
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Figure C3. Time series of area-weighted glacier-wide annual (B, ; grey), winter (B,,; blue) and summer (B; red) mass balance for different
models (Mass Balance Machine; solid, OGGM; dashed, GloGEM; dashed-dotted and PyGEM; dotted lines) and regions (a—d). The number
of glaciers per region is indicated by n. Area-weighted glacier-wide mass balances from glaciological observations (black solid lines with

dots) are shown where observations are available for all glaciers in the region.
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Figure C4. Difference between modelled glacier-wide mass balance rates and geodetic mass balance rates for test glaciers and periods with

available data (Andreassen et al., 2016, 2020) between 1960-2021 (Mass Balance Machine) and 1980-2019 (all models). Shaded areas

show reported uncertainty in geodetic mass balance rates. Modelled mass balance rates are computed between nearest months to geodetic

survey dates. Abbreviated names of glaciers (Lan: Langfjordjgkelen, Run: Rundvassbreen, Sva: Svartisheibreen, Han: Hansebreen, Tun:

Tunsbergdalsbreen, Aus: Austdalsbreen, Hel: Helstugubreen, Mem: Austre Memurubreen) and subperiod covered (e.g. 66-08 is 1966—-2008).

Top axis shows the last five digits of the RGI 6.0 glacier ID and the climatic (N: north, W-MAR: west-maritime, W: west, E: east) and glacier
(FIN: Finnmark, SKJ: Skjomen, SVA: Svartisen, ALF: Alfotbreen, JOB: Jostedalsbreen, JOT: Jotunheimen) regions. Glaciers are ordered

from north to south and maritime to continental.
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Table D1. Summary of model performance metrics on point, mean elevation-band and glacier-wide mass balance using available glacio-

logical data for the test glaciers over the common modelling period 1980-2019 (corresponding to Figs. 6 and 8, for point and glacier-wide,

respectively). Performance metrics are Root Mean Squared Error (RMSE; m w.e.), bias (m w.e.) and explained variance (R%; -), and n is

the number of data points. Model metrics are highlighted in bold for the best performing models when the performance metric represents an

improvement of 5% or more with respect to the next best performing model for RMSE and R? or an absolute reduction of 0.1 m w.e. or more

for bias. Mean mass balance in elevation bands is calculated for 100 m bands from available point mass-balance observations, which varies

between 6130 per glacier, giving a total of 55, 55 and 56 mean elevation-band values for annual, summer and winter, respectively.

Spatial Temporal n Metric MBM GloGEM OGGM PyGEM
RMSE  0.55 0.65 0.82 0.87

Winter 517  Bias —0.05  —0.35 0.26 0.59

R? 0.68 0.55 0.26 0.17

RMSE  0.70 0.79 0.89 0.93

Point Summer 516 Bias 0.10 0.29 —-0.27 —-0.27
R? 0.68 0.60 0.49 0.44

RMSE  0.97 0.91 0.93 1.05

Annual 516  Bias 001  —0.02 0.02 0.36

R? 0.64 0.69 0.68 0.59

RMSE  0.41 0.56 0.84 0.91

Winter 180 Bias 0.10 —0.20 0.33 0.71

R? 0.80 0.62 0.15  —0.01

RMSE  0.60 0.65 0.73 0.72

Elevation-band ~ Summer 180 Bias 0.00 0.35 —0.18 —0.25
R? 0.67 0.61 0.51 0.52

RMSE  0.83 0.90 0.86 0.92

Annual 180  Bias 0.08 0.14 0.14 0.45

R? 0.72 0.68 0.71 0.66

RMSE  0.39 0.42 0.67 0.72

Winter 56  Bias 0.03 —0.23 0.25 0.50

R? 0.84 0.81 0.53 0.45

RMSE  0.55 0.71 0.70 0.73

Glacier-wide Summer 55 Bias —0.16 —0.23 —0.25 —-0.22
R? 0.73 0.55 0.56 0.53

RMSE  0.54 0.56 0.58 0.66

Annual 55  Bias —0.12 0.20 0.02 0.28

R? 0.75 0.73 0.71 0.62
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